TEORÍA DE REDES NEURONALES

La llamada teoría de las redes neuronales hacer referencia a que la corteza cerebral esta formada por unas células denominadas neuronas, cada una de estas células está formada por un cuerpo, un axón, y una multitud de dentritas. Las dentritas forman una estructura de filamentos muy fina que rodean el cuerpo de la neurona. El axón es un tubo largo y delgado que se ramifica en su extremo en pequeños bulbos finales que casi tocan las dentritas de las células vecinas. 

Las redes neuronales son más que otra forma de emular ciertas características propias de los humanos, como la capacidad de memorizar y de asociar hechos. Si se examinan con atención aquellos problemas que no pueden expresarse a través de un algoritmo, se observará que todos ellos tienen una característica en común: la experiencia. El hombre es capaz de resolver estas situaciones acudiendo a la experiencia acumulada. 

Así, parece claro que una forma de aproximarse al problema consista en la construcción de sistemas que sean capaces de reproducir esta característica humana. En definitiva, las redes neuronales no son más que un modelo artificial y simplificado del cerebro humano, que es el ejemplo más perfecto del que disponemos para un sistema que es capaz de adquirir conocimiento a través de la experiencia. Una red neuronal es “un nuevo sistema para el tratamiento de la información, cuya unidad básica de procesamiento está inspirada en la célula fundamental del sistema nervioso humano: la neurona”. 

Neuronas Artificiales

Una neurona "artificial", que intenta modelar el comportamiento de la neurona biológica. Aquí el cuerpo de la neurona se representa como un sumador lineal de los estímulos externos, seguida de una función no lineal yj = f(zj). La función f(zj) es llamada la función de activación, y es la función que utiliza la suma de estímulos para determinar la actividad de salida de la neurona.

Las redes neuronales son modelos simples del funcionamiento del sistema nervioso. Las unidades básicas son las neuronas, que generalmente se organizan en capas

 Estructura de una red neuronal
Estructura de una red neuronal


Una red neuronal es un modelo simplificado que emula el modo en que el cerebro humano procesa la información: Funciona simultaneando un número elevado de unidades de procesamiento interconectadas que parecen versiones abstractas de neuronas.

Las unidades de procesamiento se organizan en capas. Hay tres partes normalmente en una red neuronal : una capa de entrada, con unidades que representan los campos de entrada; una o varias capas ocultas; y una capa de salida, con una unidad o unidades que representa el campo o los campos de destino. Las unidades se conectan con fuerzas de conexión variables (o ponderaciones). Los datos de entrada se presentan en la primera capa, y los valores se propagan desde cada neurona hasta cada neurona de la capa siguiente. al final, se envía un resultado desde la capa de salida.

La red aprende examinando los registros individuales, generando una predicción para cada registro y realizando ajustes a las ponderaciones cuando realiza una predicción incorrecta. Este proceso se repite muchas veces y la red sigue mejorando sus predicciones hasta haber alcanzado uno o varios criterios de parada.

Al principio, todas las ponderaciones son aleatorias y las respuestas que resultan de la red son, posiblemente, disparatadas. La red aprende a través del entrenamiento. Continuamente se presentan a la red ejemplos para los que se conoce el resultado, y las respuestas que proporciona se comparan con los resultados conocidos. La información procedente de esta comparación se pasa hacia atrás a través de la red, cambiando las ponderaciones gradualmente. A medida que progresa el entrenamiento, la red se va haciendo cada vez más precisa en la replicación de resultados conocidos. Una vez entrenada, la red se puede aplicar a casos futuros en los que se desconoce el resultado.

No hay comentarios:

Publicar un comentario